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A short (and biased) historical overview of the DG methods

First DG method introduced in 1973 by Reed and Hill for linear transport.
First studied in 1974 by Lesaint and Raviart.

Extended to nonlinear hyperbolic conservation laws in the 90’s by B.C. and
C.-W. Shu.

Extended to compressible flow in 1997 first by F. Bassi and S. Rebay.

New DG methods for diffusion appear and some old ones (the IP methods of
the late 70’s) are resuscitated. A unified analysis is proposed in 2002 by D.
Arnold, F. Brezzi, B.C. and D. Marini.

Explosive extension to a wide variety of equations.

They clash with the well-established mixed and continuous Galerkin
methods. In response, the HDG methods are introduced in 2009 by B.C., J.
Gopalakrishnan and R. Lazarov. The HDG methods are strongly related to
the hybrid methods and to the hybridization techniques of the mid 60’s
introduced as implementation techniques for mixed methods.
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Motivation
Why use DG methods? Good approximation of smooth solutions.
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8π (right) with quadratic

polynomials.

(B.C. and C.-W. Shu, 1990.)
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Motivation
Why use DG methods? Good approximation of smooth solutions.
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Motivation
Why use DG methods? Local postprocessing enhances the accuracy.
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The absolute value of the errors for P2 with N=10, 20, 40, 40, 80 and 160
elements. Before post-processing (left) and after post-processing (right).

(B.C., M. Luskin, C.-W. Shu and E. Suli, 2003).
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Motivation
Why use DG methods? Good approximation of discontinuities.
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Motivation
Why use DG methods? Good approximation of contacts and shocks.
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Motivation
Why use DG methods? Ideally suited for adaptivity.
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Motivation
Why use DG methods? Ideally suited for adaptivity.
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Supersonic flow around a NACA0012 airfoil: The hp–mesh has 783
elements, 69956 degrees of freedom, and produces an error of

|J(u)− J(uDG)| = 1.311× 10−4.

(Houston and Suli, 2002).
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The original DG method.
Transport of neutrons.

The original DG method was devised for numerically solving equations
modeling the transport of neutrons. A simplified version of that model is
the following:

σ u +∇ · (a u) = f in Ω,

u = uD on ∂Ω−,

where σ > 0 , a is a constant vector and ∂Ω− the inflow boundary of
Ω ⊂ Rd , that is, ∂Ω− = {x ∈ ∂Ω : a · n(x) < 0}.

Bernardo Cockburn (U. of Minnesota, USA) Discontinuous Galerkin Methods Barcelona, 2014 12 / 120



The original DG method
Transport of neutrons.

Triangulation Ωh = {K} of Ω and boundary data uD on ∂Ω−.

a
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The original DG method.
Rewriting the equations.

Set û := uD on ∂Ω−.

Given û on ∂K−, compute u by solving

σ u +∇ · (a u) = f in K ,

u = û on ∂K−.

Given u in K , set û := u on ∂K \ ∂K−.

Here ∂K− := {x ∈ ∂K : a · n(x) < 0}.
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The original DG method
Solving the equations.

Given û on ∂K− (left), compute u on K (right).

a
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The original DG method
Solving the equations.

Set û := u on ∂K \ ∂K− (left). The computation on other elements can
now proceed (right).

a

K

a

K
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The original DG method
Solving the equations.

Given û := uD on ∂Ω−, compute u (left) and then obtain û (right).

a a
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The original DG method
Solving the equations.

Given û, compute u (left) and then obtain û (right).

a a
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The original DG method
The weak formulation on each element.

Given û on ∂K−, we have that u satisfies the weak formulation

σ (u,w)K − (u, a · ∇w)K + 〈a · nu,w〉∂K\∂K−

= (f ,w)K − 〈a · nû,w〉∂K−
,

for all w ∈ W (K ).
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The original DG method
The Galerkin method on each element.

The Galerkin method on the element K ∈ Ωh is defined as follows. We
take uh in the space W (K ) and determine it by requiring that

σ (uh,w)K − (uh, a · ∇w)K + 〈a · nuh,w〉∂K\∂K−

= (f ,w)K − 〈a · nûh,w〉∂K−
,

for all w ∈ W (K ).
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The original DG method
Implementation.

Set ûh := uD on ∂Ω−.

Given ûh on ∂K−, compute uh in K as the element of W (K ) such
that

σ (uh,w)K − (auh,∇w)K+ 〈a · nuh,w〉∂K\∂K−

=(f ,w)K − 〈a · nûh,w〉∂K−
,

for all w ∈ W (K ).

Given uh in K , set ûh := uh on ∂K \ ∂K−.
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The original DG method.
The stabilization mechanism. The jumps uh − ûh stabilize the method.

The energy identity for the exact solution is

σ‖u − f /2σ‖2L2(Ω) +
1

2
〈|a · n|u, u〉∂Ω+ = Ψ(f , uD),

and for the approximate solution,

σ‖uh − f /2σ‖2L2(Ω) +
1

2
〈|a · n|uh, uh〉∂Ω+ +Θh(uh − ûh) = Ψ(f , uD),

where Θh(uh − ûh) :=
1
2

∑
K∈Ωh

〈|a · n|(uh − ûh), uh − ûh〉∂K−
.

The method is stabilized by the term Θh(uh − ûh).
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The original DG method.
The stabilization mechanism. The jumps uh − ûh control the residuals.

The Galerkin formulation on the element K reads

σ (uh,w)K − (uh, a · ∇w)K + 〈a · nûh,w〉∂K = (f ,w)K ∀ w ∈ W (K ),

or, equivalently,

(RK ,w)K = 〈R∂K ,w〉∂K ∀ w ∈ W (K ),

where RK := σ uh +∇ · (a uh)− f and R∂K := a · n (uh − ûh).

Thus, the L2-projection of RK into W (K ) is controlled by the jumps
R∂K = a · n (uh − ûh).
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The original DG method.
The stabilization mechanism. The case of non-smooth solutions.

The exact solution u in the element K is not smooth.

The residual RK is big.

The jump R∂K = |a · n|(uh − ûh) is big.

The dissipation produced by Θh(uh − ûh) damps the spurious
oscillations.
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The original DG method.
Convergence properties. The spaces and the triangulations.

special triangulations Ωh made of shape-regular simplexes K ,

W (K ) := Pk(K ),

A special triangulation for a = (1, 0).
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The original DG method.
Convergence properties. Another triangulation.

Another special triangulation for a = (1, 0).
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The original DG method.
Convergence properties. The auxiliary projection.

We can find projections such that the projection of the errors

Π : H1(K ) → W (K ), εu := Π(u − uh),

P∂ : L2(F ) → M(F ), εû := P∂(u − ûh),

satisfy

a · n εû = a · n ε̂u,

for all w ∈ W (K ),

σ (εu,w)K − (εu, a · ∇w)K + 〈a · n ε̂u,w〉∂K = σ (Πu − u,w)K ,

ε̂u = 0 on ∂Ω−.
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The original DG method.
Convergence properties. The jumps uh − ûh are controlled by the projection.

From the energy identity

σ‖εu −
1

2
(Πu − u)‖2L2(Ω) +Θh(εu − ε̂u) =

σ

4
‖Πu − u‖2L2(Ω),

we deduce that

‖u − uh‖L2(Ω) + σ−1/2Θ
1/2
h (εu − ε̂u) ≤ C ‖Πu − u‖L2(Ω)

≤ C | u |Hk+1(Ωh)
hk+1.

Thus, optimal convergence orders are obtained for smooth solutions.
(B.C., B. Dong and J. Guzmán, 2008.)
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The original DG method.
Conclusion.

We have seen that the original DG method:

Uses discontinuous approximations for both the solution inside each
element and its trace on the element boundary.

Uses a Galerkin method to weakly enforce the equations on each
element.

Is devised so that they can be efficiently implemented.

Has a stabilization mechanism that allows it to damp away spurious
oscillations and reach optimal orders of convergence at the same time.
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DG methods for linear symmetric hyperbolic systems

ut +∇ · F(u) + Bu = f in Ω× (0,T ),

u = g at t = 0,

F(u)n −Nu = 0 on ∂Ω× [0,T ].

Here (F(u))ij :=
∑m

ℓ=1(Aj)iℓuℓ, and Aj , j = 1, . . . ,N, are constant,
symmetric matrices.
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DG methods for linear symmetric hyperbolic systems
Friedrichs’ result.

In 1958, Friedrichs showed that the above problem has a unique solution if

N +N
⋆ ≥ 0,

B + B⋆ ≥ σ Id , σ ≥ 0,

ker(An −N) + ker(An +N) = Rm.

Here An :=
∑N

i=1 Aj nj . Note that F(u)n = Anu.
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DG methods for symmetric hyperbolic systems
Acoustics: The first-order system

ρ
∂2u

∂t2
−∇ · (A∇u) = f in Ω× (0,T ).

c
∂q

∂t
−∇v = 0 in Ω× (0,T ),

ρ
∂v

∂t
−∇ · q = f in Ω× (0,T ).
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DG methods for linear symmetric hyperbolic systems
Elastodynamics: The first-order system

ρ
∂2
u

∂t2
−∇ · [µ∇u + (µ+ λ)(∇ · u)I] = b in Ω× (0,T ).

∂H

∂t
−∇v = 0 in Ω× (0,T ),

ρ
∂v

∂t
−∇ · (µH+ pI) = b in Ω× (0,T ),

ǫ
∂p

∂t
−∇ · v = 0 in Ω× (0,T ).
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DG methods for linear symmetric hyperbolic systems
Maxwell’s equations

µ
∂H

∂t
+∇× E = 0,

ǫ
∂E

∂t
−∇×H = 0,
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Space discretization of linear symmetric hyperbolic systems
The Galerkin method and the numerical flux.

We take uh(t) in the space W (K ) and determine it by requiring that

((uh)t ,w)K − (F(uh),∇w)K +
〈
F̂hn,w

〉
∂K

= (f ,w)K ,

for all w ∈W (K ), where

F̂hn := An+(
1

2
(u+

h + u

−
h )) +

1

2
Nn±(u

+
h − u

−
h )

The matrix Nn± is called the dissipation matrix.
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Space discretization of linear symmetric hyperbolic systems
Examples of numerical fluxes.

• In the scalar case, F(u) = a u. For the original DG method: F̂hn is the
upwinding numerical flux An+ := a · n+ and Nn± = |a · n|.

• The upwinding numerical flux F̂hn in the general case is obtained as
follows:

Diagonalize An = P−1 ΛP ,

Set Nn± := P−1 |Λ |P .

• The Lax-Friedrichs numerical flux F̂hn is obtained as follows:

Diagonalize An = P−1 ΛP ,

Set Nn± := λmaxId.
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Space discretization of linear symmetric hyperbolic systems
Main properties of the DG method.

The jumps uh
+ − uh

− stabilize the method when Nn± is positive
definite.

The jumps control the residuals.

Spurious oscillations are damped in the presence of discontinuities.

The method converges with order k+1/2.

After a local postprocessing, with order 2k + 1 for locally uniform
grids.
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Time discretization of linear symmetric hyperbolic systems
Main strategies.

Explicit Runge-Kutta methods: SSP methods. (C.-W. Shu 88, S.
Gottlieb, C.-W. Shu and E. Tadmor, 2001.)

Space-time methods: Locally implicit. (R. Haber; J. van der Vegt; R.
Falk and G. Richter, 1999; see also, Gopalakrishnan, Schöberl and
Winterstiger, 1917)

Globally implicit methods: Efficient multigrid techniques. (J. van der
Vegt; P. Persson and J. Peraire.)
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The original DG method.
Dispersion and dissipation properties.

For the semidiscrete transport equation:

Order of dispersion: 2 k + 3.

Order of dissipation: 2 k + 2.

(M. Ainsworth, 2004).
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The original DG method.
Dispersion and dissipation properties.
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Effect of the polynomial degree on the approximation of discontinuities.
(B.C. and C.-W. Shu, 2001.)
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DG methods for linear symmetric hyperbolic problems.
Conclusion.

We have devised DG methods that:

Use discontinuous approximations for both the solution inside each
element and its trace on the element boundary.

Use a Galerkin method to weakly enforce the equations on each
element.

Have a stabilization mechanism that allows it to damp away spurious
oscillations and reach almost optimal orders of convergence at the
same time.
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The RKDG methods.
Non-linear hyperbolic problems.

ut +∇ · f(u) = 0.

Hyperbolic:
∑d

i=1
∂fi
∂u (u) ni is diagonalizable and has real eigenvalues.

Example 1: The Euler equations of gas dynamics:

ρt + (ρ vj),j = 0,

(ρ vi )t + (ρ vi vj − σij),j = fi ,

(ρ e)t + (ρ e vj − σij vi ),j = fi vi ,

where σij = −p δij and e = p
(γ−1) ρ + 1

2 | v |
2.
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The RKDG methods.
Non-linear hyperbolic problems.

Example 2: Isentropic gas dynamics in Lagrangian coordinates,

τt − ux = 0,

ut + (p(τ))x = 0,

and in Eulerian coordinates

ρt + (v ρ)x = 0,

(ρ v)t + (ρ v2 + p(ρ−1))x = 0,

where p(τ) = Aτ−γ for a polytropic ideal gas.

Example 3: Scalar hyperbolic conservation law:

ut +∇ · f(u) = 0.

Inviscid Burgers equation: 1D and f(u) = u2/2.
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The RKDG methods.
Non-linear hyperbolic problems.

Main difficulties:

Convergence to the physically relevant solution must be ensured.

An additional mechanism to properly capture discontinuities is needed.

Implicit methods are very inefficient in the presence of discontinuities.

Solution:

DG-space discretization with suitable numerical traces

(approximate Riemann solvers).

SSP, explicit time-marching algorithms.

Slope limiters (part of an artificial viscosity hidden term!).
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The RKDG methods.
Non-linear hyperbolic problems.

Examples of numerical fluxes:

The Godunov flux:

f̂ (a, b) = min
a≤u≤b

f (u), if a ≤ b,

f̂ (a, b) = max
b≤u≤a

f (u), otherwise.

The Engquist-Osher flux:

f̂ (a, b) =

∫ b

0

min(f ′(s), 0) ds

+

∫ a

0

max(f ′(s), 0) ds + f (0).

The Lax-Friedrichs flux:

f̂ (a, b) =
1

2
[f (a) + f (b)− C (b − a)],

C = max
inf u0(x)≤s≤sup u0(x)

|f ′(s)|.
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The RKDG methods.
Non-linear hyperbolic problems.

Development of the RKDG method:

1982: G.Chavent and G.Salzano: Use the DG-space discretization

with Godunov flux.

1989: G.Chavent and B.C.: Incorporate the slope limiter.

1991: B.C. and C.-W.Shu: Incorporate an SSP time-marching

method: First RKDG method.

89-98: B.C. and C.-W.Shu (+S.Hou+S.Lin) : RKDG methods.

A parallel development:

1987: Allmaras and Giles: Euler equations.

1989: Allmaras: P1 and 3-stage second-order RK.

1991: Halt and Agarwall

1992: Halt: high polynomial degree.
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The RKDG method

We construct the RKDG methods for the non-linear hyperbolic model
problem

ut + f (u)x = 0, in (0, 1)× (0,T ),

u(·, 0) = u0(·) on (0, 1),

u(0+, ·) = u(1−, ·) on (0,T ),

The main components of the RKDG methods are:

A DG space discretization,

A strongly-stable RK time-marching discretization,

A generalized slope limiter,
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• Discontinuous Galerkin discretization in space

The approximate solution uh restricted to the interval Ij belongs to the
space P(Ij).

The non-linear conservation law element-by-element by requiring that for
every function vh in the space P(Ij)

((uh)t , v)Ij − (f (uh), (v)x)Ij + f̂ (uh) v

∣∣∣∣
xj+1/2

xj−1/2

= 0,

where f̂ (uh) is the so-called numerical flux has the following general form:

f̂ (uh)(xj+1/2) = f̂ (uh(x
−
j+1/2), uh(x

+
j+1/2)).

Monotone schemes are obtained with k = 0.
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• Strong-Stability-Preserving RK methods

Each time step for d
dt
uh = L(uh) is of the form

1 set u
(0)
h = unh ;

2 for i = 1, ...,K compute the intermediate
functions:

u
(i)
h =

i−1∑

l=0

αil w
l
h,

w l
h = u

(l)
h +

βil
αil

∆tnLh(u
(l)
h );

3 set un+1
h = uKh .

Note that αil ∈ [0, 1], and that, if αil = 0, then βil = 0.
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Set
wh = uh + δLh(uh) ≡ EULER(uh; δ),

and assume that
|wh | ≤ | uh | ∀| δ | ≤ δ0.

Then

| u
(i)
h | ≤

i−1∑

l=0

αil |w
l
h | ≤

i−1∑

l=0

αil | u
(l)
h |,

provided that
βil
αil

∆tn ≤ δ0.

This implies that

| unh | ≤ | u0h | ∀n = 0, . . . ,N.
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The Euler step is non-increasing in | · | if:

We take the semi-norm | · | to be

| uh | ≡
∑

j

| uj+1 − uj |,

where uj =
1
∆j

∫
Ij
uh(x) dx .

We take

δ−1
0 = 2

(
| f̂ (a, ·) |Lip

∆j+1
+

| f̂ (·, b) |Lip
∆j

)
.

We assume that the following sign conditions are satisfied:

sign (u+
j+1/2 − u+

j−1/2) = sign (uj+1 − uj),

sign (u−
j+1/2 − u−

j−1/2) = sign (uj − uj−1).
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•The generalized slope limiter

Since the sign conditions are not automatically satisfied, we enforce them
by means of a simple projection called the generalized slope limiter, ΛΠh.

It is indeed possible to construct generalized slope limiters that enforce the
sign conditions which, moreover, have the following properties:

Is a projection into the finite element space.

Leaves the averages unchanged.

Leaves a linear function unchanged.

Can be efficiently parallelized.

The slope limiter of the MUSCL scheme is the prototypical example.
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•The RKDG method

Set u0h = ΛΠhPhu0.

For n = 0 until N − 1 do:

1 set u
(0)
h = unh ;

2 for i = 1, ...,K compute:

u
(i)
h = ΛΠh

(
i−1∑

l=0

αil w
l
h

)
,

w l
h = EULER(u

(l)
h ;

βil

αij

∆tn);

3 set un+1
h = uKh .
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We have the following boundedness result.

Theorem

Assume that
βil
αij

∆tn ≤ δ0.

Then, we have that
| unh | ≤ | u0 |TV (0,1),

where unh is given by an RKDG scheme.
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The RKDG methods.
Non-linear hyperbolic problems.

Positivity-preserving RKDG methods (Shu et al.).

How to avoid the use of slope limiters?

Rigorous error analysis for shocks?
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The HDG methods for diffusion
Static condensation of the exact solution.

We provide a ”static condensation” characterization of the solution of the
following second-order elliptic model problem:

cq +∇u = 0 in Ω,

∇ · q = f in Ω,

û = uD on ∂Ω.

Here c is a matrix-valued function which is symmetric and uniformly
positive definite on Ω.
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The HDG methods for diffusion
Static condensation of the exact solution: Local problems and transmission conditions.

We have that the exact solution satisfies the local problems

cq +∇u = 0 in K ,

∇ · q = f in K ,

the transmission conditions

[[û]] = 0 if F ∈ E
o
h,

[[q̂]] = 0 if F ∈ E
o
h,

and the Dirichlet boundary condition

û = uD if F ∈ E
∂
h .
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The HDG methods for diffusion
Static condensation of the exact solution: Rewriting the equations.

We can obtain (q, u) in K in terms of û on ∂K and f by solving

cq +∇u = 0 in K ,

∇ · q = f in K ,

u = û on ∂K .

The function û can now be determined as the solution, on each F ∈ Eh, of
the equations

[[q̂]] = 0 if F ∈ E
o
h,

û = uD if F ∈ E
∂
h ,

where q̂ is the trace of q = q(û, f ) on ∂K .
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The HDG methods for diffusion
Static condensation of the exact solution: A characterization of the solution.

We have that (q, u) = (Qû,Uû) + (Qf ,Uf ), where

cQû +∇Uû = 0 in K , cQf +∇Uf = 0 in K ,

∇ ·Qû = 0 in K , ∇ ·Qf = f in K ,

Uû = û on ∂K , Uf = 0 on ∂K .

The function û can now be determined as the solution, on each F ∈ Eh, of
the equations

− [[Q̂û]] = [[Q̂f ]] if F ∈ E
o
h,

û = uD if F ∈ E
∂
h .
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The HDG methods for diffusion
Static condensation of the exact solution. The one-dimensional case K = (xi−1, xi ) for
i = 1, . . . , I , with c = 1.

We have that (q, u) = (Qû,Uû) + (Qf ,Uf ), where

Qû +
d

dx
Uû = 0 in (xi−1, xi ), Qf +

d

dx
Uf = 0 in (xi−1, xi ),

d

dx
Qû = 0 in (xi−1, xi ),

d

dx
Qf = f in (xi−1, xi ),

Uû = û on {xi−1, xi}, Uf = 0 on {xi−1, xi}.

The function û is the solution of

Q̂û(x
+
i )− Q̂û(x

−
i ) = −Q̂f (x

+
i ) + Q̂f (x

−
i ) for i = 1, . . . , I − 1,

û(xi ) = uD(xi ) for i = 0, I .
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The HDG methods for diffusion
Static condensation of the exact solution. The one-dimensional case K = (xi−1, xi ) for
i = 1, . . . , I , with c = 1.

We have that (q, u) = (Qû,Uû) + (Qf ,Uf ), where, for x ∈ (xi−1, xi ),

Qû(x) = −
1

h
(ûi − ûi−1), Qf (x) = −

∫ xi

xi−1

G
i
x(x , s)f (s) ds,

Uû(x) = ϕi (x) ûi + ϕi−1(x) ûi−1 Uf (x) =

∫ xi

xi−1

G
i (x , s)f (s) ds.

The function û is the solution of

−
1

h
(ûi−1 − 2 ûi + ûi+1) =

∫ xi+1

xi−1

ϕi (s) f (s) ds for i = 1, . . . , I − 1,

û(xi ) = uD(xi ) for i = 0, I .
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The HDG methods for diffusion
Static condensation of the continuous Galerkin method. (Guyan 65)

The continuous Galerkin method provides an approximation to u,
uh ∈ Wh(uD), determined by

(a∇uh,∇w)Ω = (f ,w)Ω ∀w ∈ Wh(0).

where

Wh = {w ∈ C
0(Ω) : w |K ∈ W (K ) ∀K ∈ Ωh},

Wh(g) = {w ∈ Wh : w = Ih(g) on ∂Ω}.

Bernardo Cockburn (U. of Minnesota, USA) Discontinuous Galerkin Methods Barcelona, 2014 62 / 120



The HDG methods for diffusion
Static condensation of the continuous Galerkin method. Splitting the degrees of freedom.

For each element K ∈ Ωh,

W (K ) = W0(K )⊕W∂(K ),

W0(K ) := {w ∈ W (K ) : w |∂K = 0},

W∂(K ) := {w ∈ W (K ) : w |∂K = 0 =⇒ w |K = 0}.

This implies

Wh = W0,h ⊕WEh

W0,h := {w ∈ Wh : w |K ∈ W0(K ) ∀K ∈ Ωh},

WEh
:= {w ∈ Wh : w |K ∈ W∂(K ) ∀K ∈ Ωh},

and

Mh := {w |Eh
: w ∈ Wh},

Mh(g) := {µ ∈ Mh : µ|∂Ω = Ih(g)}.
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The HDG methods for diffusion
Static condensation of the continuous Galerkin method. Local problems and transmission
condition.

We obtain U ∈ W (K ) in terms of ûh and f by solving

(a∇U,∇w)K = (f ,w)K ∀w ∈ W0(K ),

U = ûh on ∂K .

The function ûh ∈ Mh is determined as the solution of

(a∇U,∇w)Ω = (f ,w)Ω ∀w ∈ WEh
(0),

ûh = Ih(uD) on ∂Ω.

Note that we have a transmission condition:

0 =〈a∇U · n, ŵ〉∂Ωh
− (∇ · (a∇U) + f ,w)Ωh

= 〈a∇U · n + r∂ , ŵ〉∂Ωh
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The HDG methods for diffusion
Static condensation of the CG method: A characterization of the approximate solution.

We have that uh = Uûh + Uf , where

(a∇Uûh ,∇w)K = 0 ∀w ∈ W0(K ),

Uûh = ûh on ∂K ,

(a∇Uf ,∇w)K = (f ,w)K ∀w ∈ W0(K ),

Uf = 0 on ∂K ,

and ûh is the element of Mh(uD) that solves the global problem

(a∇Uûh ,∇Uµ)Ω = (f ,Uµ)Ω ∀ µ ∈ Mh(0).
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The HDG methods for diffusion
Static condensation of the CG method: The original one (Guyan 65)!

The system of equations is

K [uh] = [f ],

and, after splitting the degrees of freedom, it is

[
K00 K0∂

K∂0 K∂∂

] [
[U]
[ûh]

]
=

[
f 0
f ∂

]
.

The solution of the local problems is

[U] = −K−1
00 K0∂ [ûh] + K−1

00 [f 0].

and the transmission condition

(−K∂0 K
−1
00 K0∂ + K∂∂)[ûh] = −K∂0 K

−1
00 [f 0] + [f ∂ ].
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The HDG methods for diffusion
Static condensation of the CG method: The 1D case.

For W (K ) := Pk(K ), the solution of the local problems are

Uû(x) = ϕi (x) ûi + ϕi−1(x) ûi−1 Uf (x) =

∫ xi

xi−1

G i
h(x , s)f (s) ds,

and where the global problem for the values {ûi}
N
i=0 is

−
1

h
(ûi−1 − 2 ûi + ûi+1) =

∫ xi+1

xi−1

ϕi (s) f (s) ds for i = 1, . . . ,N − 1,

ûj = uD(xj) for j = 0,N.
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The HDG methods for diffusion
Static condensation of mixed methods (deVeubeke 65).

The function (qh, uh) is the only element of Vh ×Wh satisfying the
equations

(cqh, v)Ω − (uh,∇ · v)Ω = −〈uD , v · n〉∂Ω ∀v ∈ Vh,

(∇ · qh,w)Ω = (f ,w)Ω ∀w ∈ Wh.

where

Vh = {v ∈ H(div ,Ω) : v |K ∈ V (K ) ∀K ∈ Ωh}.

Wh = {w ∈ L2(Ω) : w |K ∈ W (K ) ∀K ∈ Ωh}.
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The HDG methods for diffusion
Static condensation of mixed methods: Local problems and transmission conditions.

We define (Q,U) ∈ V (K )×W (K ) in terms of ûh and f as the solution of
the local problem

(cQ, v)K − (U,∇ · v)K = 〈ûh, v · n〉∂K ∀v ∈ V (K ),

(∇ ·Q,w)K = (f ,w)K ∀w ∈ W (K ).

The function ûh in the space Mh is such that

[[Q]] = 0 on E
o
h,

ûh = uD on ∂Ω.

The weak form of the transmission condition is

〈Q · n, µ〉∂Ωh
= 〈Q, µ〉∂Ωh\∂Ω = 〈 [[Q]], µ〉Eo

h
= 0 ∀µ ∈ Mh(0).
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The HDG methods for diffusion
Static condensation of mixed methods: A characterization of the approximate solution.

We have that (qh, uh) = (Qûh ,Uûh) + (Qf ,Uf ), where, ∀K ∈ Ωh,

(cQµ, v)K − (Uµ,∇ · v)K = −〈µ, v · n〉∂K ∀ v ∈ V (K ),

(∇ ·Qµ,w)K = 0 ∀ w ∈ W (K ),

(cQf , v)K − (Uf ,∇ · v)K = 0 ∀ v ∈ V (K ),

(∇ ·Qf ,w)K = (f ,w)K ∀ w ∈ W (K ),

and the function ûh is the element of Mh(uD) which solves the global
problem

(cQûh ,Qµ)Ωh
= (f ,Uµ)Ωh

∀ µ ∈ Mh(0).

Note that

0 = 〈Q · n, µ〉∂Ωh
= 〈Qûh

· n, µ〉∂Ωh
+ 〈Qf · n, µ〉∂Ωh

= −(cQûh
,Qµ)Ωh

+ (Uµ, f )∂Ωh
.
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The HDG methods for diffusion
Static condensation of mixed methods: The original hybridization (deVeubeqe 65)!

The system of equations is
[
A B
B t 0

] [
[qh]
[uh]

]
=

[
[uD ]
[f ]

]
.

which, after hybridization, becomes


A B C
Bt 0 0
C t 0 0





[Q]
[U]
[ûh]


 =



−C∂ [uD ]

[f ]
0


 .

The solution of the local problems is
[
[Q]
[U]

]
=

[
A B
Bt 0

]−1 [
−C [ûh]− C∂ [uD ]

[f ]

]
.

and the transmission condition is H[ ûh ] = H∂ [ uD ] + J [ f ],

H := C t (A−1 − A−1B (BtA−1B)−1 B tA−1)C .

Bernardo Cockburn (U. of Minnesota, USA) Discontinuous Galerkin Methods Barcelona, 2014 71 / 120



The HDG methods for diffusion
Static condensation of mixed methods: The 1D case.

For V (K )×W (K ) := Pk+1(K )× Pk(K ), the solution of the local
problems is

Qû(x) = −
ûi − ûi−1

h
, Qf (x) =

∫ xi

xi−1

H i
h(x , s)f (s) ds,

Uû(x) = ϕi (x) ûi + ϕi−1(x) ûi−1, Uf (x) =

∫ xi

xi−1

G i
h(x , s)f (s) ds,

and the global problem for the values {ûi}
N
i=0 is

−
1

h
(ûi−1 − 2 ûi + ûi+1) =

∫ xi+1

xi−1

ϕi (s) f (s) ds for i = 1, . . . ,N − 1,

ûi = uD(xj) for i = 0,N.
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The HDG methods for diffusion
Devising HDG methods: The main idea

The HDG methods are obtained by constructing discrete versions
(based on discontinuous Galerkin methods) of the above
characterization of the exact solution.

In this way, the globally coupled degrees of freedom will be those of
the corresponding global formulations.
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The HDG methods for diffusion
Devising HDG methods. (B.C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.) The local problems: A weak

formulation on each element.

On the element K ∈ Ωh, we define (qh, uh) terms of (ûh, f ) as the element
of V (K )×W (K ) such that

(cqh, v)K − (uh,∇ · v)K + 〈ûh, v · n〉∂K = 0,

−(qh,∇w)K + 〈q̂h · n,w〉∂K = (f ,w)K ,

for all (v ,w) ∈ V (K )×W (K ), where

q̂h · n = qh · n + τ(uh − ûh) on ∂K .
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The HDG methods for diffusion
Devising HDG methods. The global problem: The weak formulation for ûh.

For each face F ∈ Eo
h, we take ûh|F in the space M(F ). We determine ûh

by requiring that,

〈µ, [[q̂h]]〉F = 0 ∀ µ ∈ M(F ) if F ∈ E
o
h,

ûh = uD if F ∈ E
∂
h .

All the HDG methods are generated by choosing the local spaces

V (K ), W (K ), M(F ) and the stabilization function τ .
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Formulation for (qh, q̂h, uh, ûh)
Characterization of the approximate solution (B.C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.).

The approximate solution (qh, uh, ûh) is the element of the space
V h ×Wh ×Mh(uD) satisfying the equations

(cqh, v)Ωh
− (uh,∇ · v)Ωh

+ 〈ûh, v · n〉∂Ωh
= 0,

−(qh,∇w)Ωh
+ 〈q̂h · n,w〉∂Ωh

= (f ,w)Ωh
,

〈µ, q̂h · n〉∂Ωh
= 0,

for all (v ,w , µ) ∈ V h ×Wh ×Mh(0), where

q̂h · n = qh · n + τ(uh − ûh) on ∂Ωh.
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The HDG methods.
The transmission condition.

Suppose that the transmission condition implies that [[q̂h]] = 0 on a face
F ∈ Eo

h. Then, on that face, we have that

[[qh]] + τ+(uh
+ − ûh) + τ−(uh

− − ûh) = 0,

which holds if

ûh =
τ+uh

+ + τ−uh
−

τ+ + τ−
+

1

τ+ + τ−
[[qh]],

q̂h =
τ−qh

+ + τ+qh
−

τ+ + τ−
+

τ+τ−

τ+ + τ−
[[uh]]

provided τ+ + τ− > 0.
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Formulation for (uh, ûh)
Characterization of the approximate solution (D.Arnold and F.Brezzi, RAIRO, 1985; ABCD, SINUM, 02; B.C.

and K.Shi, C&F, 2014.)

For any (w , µ) ∈ Wh ×Mh, define qw ,µ ∈ V h as the solution of

(cqw ,µ, v)Ωh
− (w ,∇ · v)Ωh

+ 〈µ, v · n〉∂Ωh
= 0,

for all v ∈ Vh.
The approximate solution is (quh,ûh , uh, ûh) where (uh, ûh) is the element
of Wh ×Mh(uD) satisfying the equations

(∇ · quh,ûh ,w)Ωh
+ 〈τ(uh − ûh),w〉∂Ωh

= (f ,w)Ωh
,

〈µ,quh,ûh
· n + τ(uh − ûh)〉∂Ωh

= 0,

for all (w , µ) ∈ Wh ×Mh(0).
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Formulation for (uh, ûh)
Characterization of the approximate solution (D.Arnold and F.Brezzi, RAIRO, 1985; ABCD, SINUM, 02; B.C.

and K.Shi, C&F, 2014.)

For any (w , µ) ∈ Wh ×Mh, define qw ,µ ∈ V h as the solution of

(cqw ,µ, v)Ωh
− (w ,∇ · v)Ωh

+ 〈µ, v · n〉∂Ωh
= 0,

for all v ∈ Vh.
The approximate solution is (quh,ûh , uh, ûh) where (uh, ûh) is the element
of Wh ×Mh(uD) satisfying the equations

(cquh,ûh ,qw ,µ)Ωh
+ 〈µ,quh,ûh · n〉∂Ωh

+ 〈τ(uh − ûh),w〉∂Ωh
= (f ,w)Ωh

,

〈µ,quh,ûh
· n + τ(uh − ûh)〉∂Ωh

= 0,

for all (w , µ) ∈ Wh ×Mh(0).
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Formulation for (uh, ûh)
Characterization of the approximate solution (D.Arnold and F.Brezzi, RAIRO, 1985; ABCD, SINUM, 02; B.C.

and K.Shi, C&F, 2014.)

For any (w , µ) ∈ Wh ×Mh, define qw ,µ ∈ V h as the solution of

(cqw ,µ, v)Ωh
− (w ,∇ · v)Ωh

+ 〈µ, v · n〉∂Ωh
= 0,

for all v ∈ Vh.
The approximate solution is (quh,ûh , uh, ûh) where (uh, ûh) is the element
of Wh ×Mh(uD) satisfying the equations

(cquh,ûh ,qw ,µ)Ωh
+ 〈τ(uh − ûh),w − µ〉∂Ωh

= (f ,w)Ωh
,

for all (w , µ) ∈ Wh ×Mh(0).
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Formulation for (uh, ûh)
The associated minimization property. (H. Kabbaria, A. Lew, and B.C., 14; B.C. and K.Shi, 14; B.C. and

J.Shen, 15)

The function (uh, ûh) minimizes the quadratic functional

Jh(w , µ) :=
1

2
(cqw ,µ,qw ,µ)Ωh

+
1

2
〈τ(w − µ), (w − µ)〉∂Ωh

− (f ,w)Ωh
,

over the functions (w , µ) ∈ Wh ×Mh(uD).
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Formulation for ûh
Characterization of the approximate solution (B.C. and J.Gopalakrishnan, SINUM, 2005; B.C. and

J.Gopalakrishnan and R.Lazarov, SINUM, 2009.)

We have that (qh, uh) = (Qûh ,Uûh) + (Qf ,Uf ) where

(Qûh ,Uûh) := (Q(ûh, 0),U(ûh, 0)), (Qf ,Uf ) := (Q(0, f ),U(0, f )).

where (Q(ûh, f ),U(ûh, f )) is the linear mapping that associates (ûh, f ) to
(qh, uh), and where the numerical trace ûh is the element of the space

Mh(uD) := {µ ∈ L2(Eh) : µ|F ∈ M(F ) ∀ F ∈ Eh, uh|∂Ω := P∂uD},

satisfying the equations

ah(ûh, µ) = ℓh(µ) ∀ µ ∈ Mh(0),

where ah(µ, λ) := −〈µ, Q̂λ · n〉∂Ωh
, and ℓh(µ) := 〈µ, Q̂f · n〉∂Ωh

.
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Formulation for ûh
The associated minimization problem (B.C. and K.Shi, C&F, 14; B.C. and J.Shen, 15)

Theorem

We have that

ah(µ, λ) = (cQµ,Qλ)∂Ωh
+ 〈τ(Uµ − µ), (Uλ − λ)〉∂Ωh

,

ℓh(µ) = (f ,Uµ)∂Ωh.

Moreover, ah(·, ·) is positive definite on Mh(0)×Mh(0).

The numerical trace ûh minimizes the quadratic functional

Jh(η) :=
1

2
ah(η, η)− ℓh(η),

over the functions η in Mh(uD).
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Formulation for ûh
Condition number of the stiffness matrix.

Theorem

If V (K ) = Pk(K ), W (K ) = Pk(K ) and M(F ) = Pk(K ), k ≥ 0,the
condition number of ah(·, ·) (on Mh,0 ×Mh,0) is of order

(1 + (τ∗ h)2)h−2.

Here τ∗ := maxK∈Ωh
τ |∂K\F∗

K
, where F ∗

K is an arbitrary face of the simplex
K .

Note that the matrix is invertible even if τ ≡ 0!
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Existence and uniqueness.
The local problems are well defined.

Theorem

The local solver on K is well defined if

τ > 0 on ∂K ,

∇W (K ) ⊂ V (K ).
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Existence and uniqueness.
Proof.

The system is square. Set ûh = 0 and f = 0.
For (v ,w) := (qh, uh), the equations read

(cqh,qh)K − (uh,∇ · qh)K = 0,

−(qh,∇uh)K + 〈q̂h · n, uh〉∂K = 0.

Hence
(cqh,qh)K + 〈(q̂h − qh) · n, uh〉∂K = 0,

and since q̂h · n = qh · n + τ(uh), we get

(cqh,qh)K + 〈τ (uh), uh〉∂K = 0.

This implies that qh = 0 on K , and that uh = 0 on ∂K .
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Existence and uniqueness.
Proof.

Now, the first equation defining the local problems reads

−(uh,∇ · v)K = 0,

for all v ∈ V (K ). Hence
(∇uh, v)K = 0,

and so ∇uh = 0. This proves the result.
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Existence and uniqueness.
The numerical trace ûh is well defined.

Theorem

The numerical trace ûh is well defined if, for each K ∈ ∂Ωh,

τ > 0 on ∂K ,

∇W (K ) ⊂ V (K ).
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Existence and uniqueness.
Proof.

The system is square. Set uD = 0 and f = 0. For µ := ûh, the equation
reads

0 =
∑

F∈Eo
h

〈ûh, [[q̂h]]〉F =
∑

K∈Ωh

〈ûh, q̂h · n〉∂K =: 〈ûh, q̂h · n〉∂Ωh
.

Note that

−〈ûh, q̂h · n〉∂Ωh
=− 〈ûh,qh · n + τ(uh − ûh)〉∂Ωh

=− 〈ûh,qh · n〉∂Ωh
− 〈uh, τ(uh − ûh)〉∂Ωh

+ 〈(uh − ûh), τ(uh − ûh)〉∂Ωh

=− 〈ûh,qh · n〉∂Ωh
− 〈uh, q̂h · n〉∂Ωh

+ 〈uh,qh · n〉∂Ωh

+ 〈(uh − ûh), τ(uh − ûh)〉∂Ωh

Bernardo Cockburn (U. of Minnesota, USA) Discontinuous Galerkin Methods Barcelona, 2014 89 / 120



Existence and uniqueness.
Proof.

For (v ,w) := (qh, uh), the equations of the local problems read

(cqh,qh)K − (uh,∇ · qh)K + 〈ûh,qh · n〉∂K = 0,

−(qh,∇uh)K + 〈q̂h · n, uh〉∂K = 0.

Then

−〈ûh, q̂h · n〉∂Ωh
=(cqh,qh)Ωh

+ 〈(uh − ûh), τ(uh − ûh)〉∂Ωh
.

As a consequence, 〈ûh, q̂h · n〉∂Ωh
= 0 implies qh = 0 on Ωh and uh = ûh

on ∂Ωh.

Bernardo Cockburn (U. of Minnesota, USA) Discontinuous Galerkin Methods Barcelona, 2014 90 / 120



Existence and uniqueness.
Proof.

Now, the first equation defining the local problems reads

−(uh,∇ · v)K + 〈uh, v · n〉∂K = 0,

for all v ∈ V (K ). Hence
(∇uh, v)K = 0,

and so ∇uh = 0.

This shows that uh is a constant and, since uh = ûh = 0 on ∂Ω, we can
conclude that uh = 0 on Ωh. We now have that ûh = uh = 0 on ∂Ωh.
This proves the result.
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Devising superconvergent methods.
Superconvergence and postprocessing.

We seek HDG methods for which the local averages of the error u − uh,
converge faster than the errors u − uh and q − qh.

If this property holds, we introduce a new approximation u⋆h. On each
element K it lies in the space W ∗(K ) and defined by

(∇uh
⋆,∇w)K =− (cqh,∇w)K for all w ∈ W ∗(K ),

(uh
⋆, 1)K =(uh, 1)K ,

Then u − u⋆h will converge faster than u − uh. This does happen for mixed
methods!
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Illustration of the postprocessing.
An HDG method for linear elasticity.(S.-C. Soon, B.C. and H. Stolarski, 2008.)

X Y

Z

k = 1

X Y

Z

k = 1

Comparison between the approximate solution (left) and the
post-processed solution (right) for linear polynomial approximations.
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Illustration of the postprocessing.
An HDG method for linear elasticity.(S.-C. Soon, B.C. and H. Stolarski, 2008.)

X Y

Z

k = 2

X Y

Z

k = 2

Comparison between the approximate solution (left) and the
post-processed solution (right) for quadratic polynomial approximations.
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Illustration of the postprocessing.
An HDG method for linear elasticity.(S.-C. Soon, B.C. and H. Stolarski, 2008.)

X Y

Z

k = 3

X Y

Z

k = 3

Comparison between the approximate solution (left) and the
post-processed solution (right) for cubic polynomial approximations.
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First superconvergent HDG methods.(B.C, B.Dong and J.Guzman, 08; B.C.,

J.Gopalakrishnan and F.-J. Sayas, 10)

The first superconvergent HDG method: the SFH method

Method τ qh uh uh k

RT 0 k + 1 k + 1 k + 2 ≥ 0
SFH > 0 k + 1 k + 1 k + 2 ≥ 1
LDG-H O(1) k + 1 k + 1 k + 2 ≥ 1
BDM 0 k + 1 k k + 2 ≥ 2
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Sufficient conditions for superconvergence
The conditions on the local spaces.(B.C., W.Qiu and K.Shi, Math. Comp.,2012 + SINUM, 2012.)

Theorem

Suppose that the local spaces are such that

V (K ) · n +W (K ) ⊂ M(∂K ),

P0(K )× P0(K ) ⊂ ∇W (K )×∇ · V (K ) ⊂ Ṽ (K )× W̃ (K ),

Ṽ

⊥
· n ⊕ W̃⊥ = M(∂K ).

Then there is a stabilization function τ such that the HDG method
superconverges.
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Sufficient conditions for superconvergence.
Methods for which M(F ) = Q

k(F ), k ≥ 1, and K is a square. (B.C., W.Qiu and K.Shi, Math.

Comp.,2012 + SINUM, 2012.)

method V (K ) W (K )

RT[k] Pk+1,k(K ) Qk(K )

×Pk,k+1(K )

TNT[k] Q

k(K )⊕H

k
3(K ) Qk(K )

HDGQ
[k] Q

k(K )⊕H

k
2(K ) Qk(K )
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Sufficient conditions for superconvergence.
Methods for which M(F ) = Q

k(F ), k ≥ 1, and K is a cube. (B.C., W.Qiu and K.Shi, Math.

Comp.,2012 + SINUM, 2012.)

method V (K ) W (K )

RT[k] Pk+1,k,k(K ) Qk(K )

×Pk,k+1,k(K )
×Pk,k,k+1(K )

TNT[k] Q

k(K )⊕H

k
7(K ) Qk(K )

HDGQ
[k] Q

k(K )⊕H

k
6(K ) Qk(K )
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Sufficient conditions for superconvergence.
Methods for which M(F ) = Q

k(F ), k ≥ 1, and K is a square or a cube. (B.C., W.Qiu and K.Shi,

Math. Comp.,2012 + SINUM, 2012.)

method τ ‖q − qh‖Ω ‖ΠW u − uh‖Ω ‖u − u⋆h‖Ω

RT[k+1] 0 k + 1 k + 2 k + 2

TNT[k] 0 k + 1 k + 2 k + 2

HDGQ
[k] O(1) > 0 k + 1 k + 2 k + 2
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Sufficient conditions for superconvergence.
TNT in 3D: The space Hk

7(K ).
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Sufficient conditions for superconvergence.
TNT in 3D: The space Hk

7(K ).
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Sufficient conditions for superconvergence.
TNT in 3D: The space Hk

7(K ).
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The theory of M-decompositions.
(B.C., G.Fu, F.-J. Sayas, Math. Comp., to appear; B.C. and G.Fu, 2D+3D, M2AN, to appear)

Definition (The M-decomposition)

We say that V ×W admits an M-decomposition when

(a) tr(V ×W ) ⊂ M,

and there exists a subspace Ṽ × W̃ of V ×W satisfying

(b) ∇W ×∇ · V ⊂ Ṽ × W̃ ,

(c) tr : Ṽ⊥ × W̃⊥ → M is an isomorphism.

Here Ṽ⊥ and W̃⊥ are the L2(K )-orthogonal complements of Ṽ in V , and

of W̃ in W , respectively.
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The theory of M-decompositions.
A characterization of M-decompositions. (B.C., G.Fu, F.-J. Sayas, Math. Comp., to appear)

IM(V ×W ) := dimM − dim{v · n|∂K : v ∈ V ,∇ · v = 0}

− dim{w |∂K : w ∈ W ,∇w = 0}.

Theorem

For a given space of traces M, the space V ×W admits an
M-decomposition if and only if

(a) tr(V ×W ) ⊂ M,

(b) ∇W ×∇ · V ⊂ V ×W,

(c) IM(V ×W ) = 0.

In this case, we have

M = {v · n|∂K : v ∈ V ,∇ · v = 0}⊕{w |∂K : w ∈ W ,∇w = 0},

where the sum is orthogonal.
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The theory of M-decompositions.
Construction of M-decompositions. (B.C., G.Fu, F.-J. Sayas, Math. Comp., to appear)

Table: Construction of spaces V ×W admitting an M-decomposition, where the
space of traces M(∂K ) includes the constants. The given space Vg ×Wg satisfies
the inclusion properties (a) and (b).

V W ∇ · V

Vg ⊕ δVfillM ⊕ δVfillW Wg (if ⊃ P0(K )) = Wg

Vg ⊕ δVfillM Wg (if ⊃ P0(K )) ⊂ Wg

Vg ⊕ δVfillM ∇ · Vg (if ⊃ P0(K )) = ∇ · Vg

δV ∇ · δV γδV dim δV

δVfillM {0} ⊂ M,∩γVgs = {0} IM(Vg ×Wg )
δVfillW ⊂ Wg , ∩∇ · Vg = {0} ⊂ M IS(Vg ×Wg )
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Construction of M-decompositions

Theorem

Let Vg ×Wg satisfy properties (a) and (b) of an M-decomposition.
Assume that δVfillM satisfies the following hypotheses:

(a) ∇ · δVfillM = {0},

(b) δVfillM · n|∂K ⊂ M,

(c) δVfillM · n|∂K and {v · n|∂K : v ∈ V , ∇· v = 0} are linearly
independent,

(d) dim δVfillM = dim δVfillM · n|∂K = IM(Vg ×Wg )

Then, (Vg ⊕ δVfillM)×Wg admits an M-decomposition.
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A construction of M-decompositions
A three-step procedure to construct the filling space δVfillM

(1) Characterize the trace space {v · n|∂K : v ∈ V , ∇· v = 0}

(2) Find a trace space CM ⊂ M(∂K ) such that

CM ⊕ {v · n|∂K : v ∈ V ,∇· v = 0} = {µ ∈ M : 〈µ, 1〉∂K = 0}

note that the dimension of the space CM is equal to IM(V ×W )

(3) Set δVfillM := {vµ : µ ∈ CM}, where vµ is divergence-free function
such that vµ · n|∂K = µ
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A construction of M-decompositions
The M-indexes for different elements

V ×W ×M := Pk(K )× Pk(K )× Pk(∂K )

2D element IM(V ×W ) 3D element IM(V ×W )

triangle 0
(k≥0)

tetrahedron 0
(k≥0)

quadrilateral 1
(k=0)

2
(k≥1)

pyramid 1
(k=0)

3
(k≥1)

pentagon 2
(k=0)

4
(k=1)

5
(k≥2)

prism1 1
(k=0)

3
(k≥1)

hexagon 3
(k=0)

6
(k=1)

8
(k=2)

9
(k≥3)

hexahedron2 2
(k=0)

6
(k=1)

9
(k≥2)

1no parallel faces
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A construction of M-decompositions
An example of δVfillM on a quadrilateral

V ×W ×M := Pk(K )× Pk(K )× Pk(∂K ),

δVfillM := span{∇×(ξ4λ
k
4),∇×(ξ4λ

k
3)}.

λi is a linear function that vanishes on edge ei .

ξ4 ∈ H1(K ) is a function such that its trace on each edge is linear
and vanishes at the vertices v1, v2, and v3.
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A construction of M-decompositions
An example of δVfillM on the reference pyramid

K := {(x , y , z) : 0 < x , 0 < y , 0 < z , x + z < 1, y + z < 1}

V ×W ×M := Pk(K )× Pk(K )× Pk(∂K )

δVfillM :=





span{∇×( x y
1−z

∇z)} if k = 0

span{∇×( x yk+1

1−z
∇z),∇×( y xk+1

1−z
∇z),∇×( x y

1−z
∇x)} if k ≥ 1
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A construction of M-decompositions.
From M-decompositions to hybridized mixed methods

Theorem

Let the space V ×W admit an M-decomposition and assume that
∇ · Vg ( W. Then,

V ×∇ · V admits an M-decomposition.

Moreover, let δVfillW satisfy the following hypotheses:

(a) δVfillW · n|∂K ⊂ M,

(b) ∇ · δVfillW ⊕∇ · V = Wg ,

(c) dim δVfillW = dim ∇ · δVfillW,

Then (V ⊕ δVfillW)×W admits an M-decomposition.

For the above choices of spaces, we can set stabilization operator τ = 0 in
and obtain hybridized mixed methods.
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A construction of M-decompositions
Spaces for hybridized mixed methods on a quadrilateral

V

hdg ×W hdg ×M := Pk(K )⊕ δVfillM × Pk(K )× Pk(∂K ),

δVfillM := span{∇×(ξ4λ
k
4),∇×(ξ4λ

k
3)}.

δVfillW := x PkK .

V W M τ

UMX V

hdg ⊕ δVfillW Pk(K ) Pk(∂K ) 0

HDG V

hdg
Pk(K ) Pk(∂K ) > 0

LMX V

hdg
Pk−1(K ) Pk(∂K ) 0
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A construction of M-decompositions
Spaces for hybridized mixed method on a pyramid

V

hdg ×W hdg ×M := Pk(K )⊕ δVfillM × Pk(K )× Pk(∂K ), k ≥ 1

δVfillM := span{∇×(
x yk+1

1− z
∇z), ∇×(

y xk+1

1− z
∇z), ∇×(

x y

1− z
∇x)}.

δVfillW := x PlkK .

V W M τ

UMX V

hdg ⊕ δVfillW Pk(K ) Pk(∂K ) 0

HDG V

hdg
Pk(K ) Pk(∂K ) > 0

LMX V

hdg
Pk−1(K ) Pk(∂K ) 0
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The theory of M-decompositions.
Numerical experiments.

History of convergence of LDG-H with k = 1

h ‖u − u
⋆
h ‖Ωh

rate ‖u − u
⋆
h ‖Ωh

rate ‖u − u
⋆
h ‖Ωh

rate

τ = 1

0.1 0.15E-2 - 0.83E-2 - 0.52E-2 -
0.05 0.18E-3 3.06 0.16E-2 2.36 0.10E-2 2.34
0.025 0.23E-4 3.03 0.28E-3 2.52 0.19E-3 2.43
0.0125 0.28E-5 3.02 0.44E-4 2.68 0.35E-4 2.46
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The theory of M-decompositions.
Numerical experiments.

History of convergence of M-decompositions with k = 1

h ‖u − u
⋆
h ‖Ωh

rate ‖u − u
⋆
h ‖Ωh

rate ‖u − u
⋆
h ‖Ωh

rate

τ = 1

0.1 0.15E-2 - 0.26E-2 - 0.17E-2 -
0.05 0.18E-3 3.06 0.31E-3 3.06 0.21E-3 3.02
0.025 0.23E-4 3.03 0.38E-4 3.03 0.27E-4 2.95
0.0125 0.28E-5 3.02 0.47E-5 3.02 0.35E-5 2.96
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The theory of M-decompositions

Provides:

1 A systematic way of constructing superconvergent HDG and
hybridized mixed methods for elements of arbitrary shapes.

2 A systematic approach to satisfying elementwise inf-sup conditions,
stabilized (HDG) or not (mixed methods).

3 A systematic way of constructing finite element commuting diagrams.
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The evolution of HDG methods.
Steady-state diffusion

Relation with old DG methods. (C. Gopalakrishnan, Lazarov, 09; C.,
Guzman, Wang, 09).

Relation with mixed methods:

The SFH method + relation with SDG method (C., Dong, Guzman,
09; SDG Chung, C., Fu, 12).
Necessary conditions for superconvergence (C., Qiu, Shi, 12, 13, 14).
Theory of M-decompositions + new mixed methods (C., Fu, Qiu,
Sayas, 16, 17).

New stabilization functions (Lehrenfeld, Schöberl, 10; Oikawa, 14;
HHO Di Pietro, Ern, Lemaire, 14).

Different formulations of the same method (C. 16).

Different characterizations leading to the same scheme (C., 16).

Applications to a wide variety of PDEs.
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Ongoing work and open problems

A posteriori error estimates: Only in terms of uh − ûh and τ?

Efficient solvers: Domain decomposition methods?

Stokes flow: Superconvergence with other formulations?

Solid mechanics: Optimal convergence for all variables?

Are there HDG methods which conserve energy?

Linear transport: Which unknowns superconverge?

HDG methods for KdV equations: Superconvergence?

Nonlinear hyperbolic conservation laws: New ways to deal with
shocks?
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